10月 6 2008
時間と別れるための50の方法(40)
●ψ5の反映としての次元観察子ψ6(丸められた時空と開いた時空)
では、今度はこの4次元のアナロジー図を使って次元観察子ψ6のカタチがどのように表されるかを見てみましょう。下図1をご覧になりながら以下の解説を読んでみて下さい。
次元観察子ψ5がψ3とψ4の等化作用として生じる観察子であるのに対して、ψ6の方はその反映としての中和作用の次元になります。中和ですから、ψ6においてはψ3とψ4の対称性が形作られはするものの、その内実はψ5の様子とはだいぶ違ってきます。まず言えるのはψ5では無限遠点が主体の位置として自覚されているのに対し、ψ6にはそれが全く見えていないということです。その理由はおおよそ次のようなロジックで説明することができます。
まず、ψ5は人間の外面であるψ3を先手にして後手のψ4との関係を等化に持っていきます。この働きを空間の掛け算で表し、
ψ5=ψ3×ψ4
としましょう。これは前回説明したように、3次元球面が表裏で二重化する意味を表したものです。
一方、ψ6の方は人間の内面側であるψ4を先手にψ3との等化をはかろうとします。これは掛け算の順序を入れ替えて、
ψ6=ψ4×ψ3
で表すことができると考えましょう。
通常の掛け算であれば、A×B=B×Aとなり交換法則が成り立つのですが、観察子同士の掛け算は演算子の積と同じで、ψ3×ψ4とψ4×ψ3ではその結果が全く違う形を提供してきます。
人間の外面であるψ3の方は無限遠点に主体の位置が収まったカタチでした。ですから、3次元空間は3次元球面のカタチとして現れます。そこでψ3は、自身の反映としてのψ4を自分自身の反転したものとして見るのですが、当然、ψ4が自身の反転した映し絵であるならば、ψ3はψ4側の無限遠点にも主体位置があることを知っていることになります。それによって、等化によってψ5の形成へ進もうとするときに、反転した3次元空間側の無限遠点にも主体の位置を当てはめてくるというわけです。こうしてψ3の無限遠点-∞とψ4の無限遠点+∞はψ5において重合し、±∞として主体位置である点Sを完全化させることになります。
一方、ψ6=ψ4×ψ3の方では全く逆のことが起こるのが分ります。ψ4側では精神が働いていないので、無限遠点+∞が主体の位置であるという認識は生まれてはいません。ですから、ψ6がψ5の反映の作用であるψ4×ψ3としてψ4とψ3との間で対称性を取らされようとするときに、ψ6はψ3の無限遠点-∞に主体の位置があるということを見逃してしまい、結局、3次元空間をコンパクト化する(丸めるということ)ことができずに、そのまま3次元空間を開かせた形で二重化した3次元空間(多様体)として出現してくることになります。図1に示したψ6の球面の無限遠点が白い穴で表されているのが3次元が球面として閉じていないということを表しています。これがいわゆる多様体としての3次元ユークリッド空間です。
それに加えて、この3次元ユークリッド空間にはψ5が作り出した4次元の回転軸が反映として入り込んでくることになります。この反映はψ6においては4次元軸の方向の反転として現れ、4次元の計量の符号を正から負へと逆転させることになります。以前も説明したように、これが物理学が時間tとして扱っている次元に当たります。この結果、次元観察子ψ6は僕らが時空(局所)と呼んでいるものとして現れてくるという仕組みになっているわけです。
図1ではψ5とψ6の対性を強調するためにψ6も球面状のカタチで表してしまいましたが、こうした開いた3次元空間に時間が加味された時空のカタチは数学的には3次元双曲面として表されます。そのカタチを使って図1を書き直すと、次元観察子ψ5とψ6の幾何学的関係は下図2のように表すことができます。
次元観察子ψ5=3次元球面の自転とその自転軸
次元観察子ψ6=3次元双曲面の自転とその自転軸
この図の意味を簡単な言葉で表すと、(34)の図1で図示した観察者における前方向が作るSO(3)と後方向が作るSO(3)のそれぞれの空間のかたちの関係と言えるでしょう。実際に物理学では、時空R(1,3)のかたちは、
R^1(+)×SO(3)
とされています。後ろは視覚(光)が生み出されていないという意味で無限遠に主体の位置を置くことができず、文字通りどこまで行ってもたどり着けない場所として永遠に開いています。その意味で、時空は後ろ方向であるR^1(+)という半直線に3次元回転群SO(3)を作用させたもので表すことができるということです。
このψ5とψ6の関係性をさらに正確に描写するためには、例の「前方向は一点同一視によって長さが無限小にまで縮められている」という知覚的事実を盛り込む必要性が出てきます。結果、次元観察子ψ5は時空における原点Oに小さく小さく張り付けられた3次元球面の自転とその自転軸として密やかに活動していることになります(図2参照)。こうして次のような推論が導き出されてきます。
観測者に実際見えている前の世界は実のところ無限小の大きさにまで小さく小さく縮められて、後ろが作り出している広大な空間の中にすっぽりと収まってしまっているのではないか――前は持続を伴った主体(いつでも今、どこでもここ)として働き、後はそれらを時系列に沿って断片化させた瞬間時刻tと瞬間位置(x,y,z)の概念として働いているのではないか。。何という皮肉。見えている世界(前)が実は精神で、見えていない世界(後)が延長=物質となっているのだ。人間の認識はここにおいても転倒を余儀なくされている。。
さて、ψ5~ψ6のここまでの解説で、これらの幾何学的構造が訴えている意味は何なのでしょう。少し想像力を使えばそれはおのずと分ってきます。つまり、こういうことです。本来、世界には見ているものも見られているものも存在しておらず、世界自体はその起源として一つの存在であるということです。そして、世界は世界を見るものと見られるものに分離させるために、つまり、世界が世界を見ることを欲したために、3次元空間を閉ざして球面化させる方向と、そのまま開かせて時空を生み出す方向を作り出した、ということになります。
主体が客体として錯覚されている世界。それが人間なのです。
――つづく
10月 12 2008
時間と別れるための50の方法(43)
●ψ*6上でψ5はどのように見えるのか――位置の等化の風景
わたしが自分の周囲に広大な空間の広がりを意識しているとき、その広がり自体が人間の内面*としてのψ*6になっているということを前々回にお話しました。このとき実際に見えている人間の外面としての知覚球体=ψ5自体は、何度も言うように奥行きが同一視されることによって超ミクロの微小領域の中に3次元球面として丸められており、ψ*6が意味する時空の原点Oに貼り付いたようにして入り込んでいます。
このように、次元観察子という概念を通して見ると、僕らが普段「わたしを中心とする空間の広がり」と何気に称している空間は「わたし」を規定するψ5と、「わたし」からの広がりを規定するψ*6が二重に重なり合うことによって成り立っていることが分かってきます。ヌーソロジーの考え方からすれば、前者は哲学者たちが実存(知覚の場所)と呼んでいるもの、後者は科学者たちが実存(物質の場所)と呼んでいるものにとても似ていると言えます。
また、このような空間の二重性を前提におくことによって、「現時刻」という瞬間性の中にすべての時間が集約された形で現象化している人間の意識の在り方をうまく説明することができるようになります。つまり、周囲の空間を時空=ψ*6として捉えているときには、その中心点では刻一刻と時間が刻まれ、毎瞬、毎瞬という点時刻があたかも車窓から見る風景のようにあっと言う間に過去へと流れ去って行き、その反対に周囲の空間を自分自身=ψ5として捉えたときは、そこでは過去、現在、未来へと至る時間はすべてその知覚球体の直径の中に4次元空間として凝縮されおり、そこには、永遠の現在が現れるというからくりになっているわけです。人間の意識において、瞬間と持続が「今」という現象において重なり合い、想起や直感がつねに「現在」として起こるのも、人間という存在が4次元時空と4次元空間が持つこのような二重性の接点として存在させられているからでしょう。
さて、時空*=ψ*6の原点にこうして知覚球面=ψ5が貼り付いているとするならば、僕らが時空として世界を眺望したとき、周囲の風景のいたるところに知覚球面が張り付いていても不思議ではありません。原点とは単に便宜上定められたものであって、時空上のどの位置であろうが原点となり得るからです。たとえば、3日前のこの同じ時刻にもわたしはこの椅子に座っていたとします。その時間を原点と考えれば「いつでも今」としての知覚球体はその3日前に移動していることになります。このときは文字通り主体が三日前にタイムトラベルを行っているわけです。物理的に言えば、当然、そのときの光は3光日(光速度で進んで3日かかる距離)の彼方に飛び去っていることでしょうが、奥行き方向はψ5においては常に同一視されているわけですから、知覚球体自体は時間の経過に対して何の影響も受けません。
では、空間的な移動の方はどうでしょうか。あそこに見えるビルの屋上を時空の原点としよう、と思えば、そこに「どこでもここ」の知覚球体は一瞬にして移動することが可能です。もっとも、このときは時間の移動とは違って、3次元球面として表された知覚球体内部では、原点の空間的移動(x,y,z方向への並進運動)に伴って3次元球面上でそれぞれの3方向への回転が起こることになります。しかし、知覚球体自体としての3次元球面自体はやはり全く同一のものです。
つまり何が言いたいのかと言うと、知覚球体(3次元球面とその自転軸)としての「自己=ψ5」が「いつでも今、どこでもここ」としての存在ならば、時空認識の中ではあらゆるところに偏在することができるということです。となれば、時空上のすべての点は客体であると同時に主体と呼んでいいものになります。このことは、「真の主体は客体の中に息づいている」というベルクソンの達観の幾何学的説明に相当していますが、こうした「遍くわたし」の様子を『人神/アドバンストエディション』では空海の言葉を借用して「即身」と表現しました。
重々にして帝網のごとくなるを即身と名づく――空海が『即身成仏義』で著したこの言葉は華厳経に登場するパールネットワークのイメージを彷彿とさせます。重々帝網とは、いかなる部分にも全体が映り込み、無際限にその像が反射し合っているような状態のことを言います。今風に言えばホログラフィーやフラクタルのイメージです。即身成仏というと、物質概念にまみれた僕らはすぐに即身仏を連想して、お寺の中でミイラ化しているお坊さんを連想しますが、空海が説いた意味は全く違います。もともとサンスクリッド語での「成仏(アビサンボーディ)」という言葉は「仏に成る」ということではなく、「仏である」ことの意で、仏であることとは「現等覚(げんとうかく)」のことであるとされています。現等覚とは読んで字のごとく「あらゆるものが等しいものとして見える」ということです。いわゆる差取り(悟り)ですね。まさに、重々帝網の風景とは、いつでも今、どこでもこことしての、即身成仏の姿そのものであるわけです。
ヌーソロジーではψ5が人間の意識に顕在化を起こした状態を「位置の等化」と言いますが、この状況はまさにこの空海が語った「即身成仏」の風景に酷似しています。主体の位置と客体の位置が同一のものに感じられてきたとき、世界はどのように見えなければならないか——それはまさしく空海が言うように、世界のあらゆるところに世界自身が重々帝網を為して映り込むということです。しかし、こうした描写だけではまだ自我の拠点たる時空概念を解体させるほどの意味の強度は生まれません。見るものは見られるものである、主体は客体の中にいる、これら過去の神秘家や哲学者たちの達観が人間の意識を変えるだけの力を持てなかったのも、その意味の強度に不足していたからだと言えるでしょう。問題はこうした達観をどのようにして僕らの現実的な知識に接続させていくかということなのです。——つづく
By kohsen • 時間と別れるための50の方法 • 6 • Tags: ベルクソン, 人類が神を見る日, 位置の等化, 内面と外面